
JOURNAL OF COhIPlJi-ATiOKAL PHYSICS 87, 137~147 t 1990)

Vectorization of Tree ~ra~er~a~~

LARK HERNQUIST

A simple method for vectorizing tree searches, which operates by processing al! xie:ant
nodes ar the same depth in the tree simultaneously. is described. This procedure appears 10
be general. assuming that gather-scatter operations are vectorizable, but is most effkient if :h:
traversals proceed monotonically from the root to the leaves. or ke L’WSU. Particular applica-
tion IS made to the hierarchical tree approach for computing the self-consistent interaction of
!‘i: -bodies. It is demonstrated that full vectorization of the requisite tree searches is kdsibk,

resulting in a factor - 4-5 improcement in cpu eficiency in the traversals on a CRAY X-MP,
The overall gain in the case of the Barnes-Hut tree code algorithm is a factor s 2-3. inrpiying
a net speed-up of ~4OG500 on a CRAY X-MP over a VXX 11.7SC or SUN 3,‘50 < 19gJ”: _I
.Ac1dcm1c Prrjs. Inc.

1. INTR~DLICTI~N

The use of tree-structured data to store and process information is wide-spread
in computer science. In an abstract sense, trees provide a natural means for
representing sets whose elements have a special relation to one another. T‘his LS
especially true far hierarchical sets, in which some elements are ranked above
others, where trees allow a simple visualization of any substructure that might be
present. Trees can aiso be used to process elements that are linearly ordered,
providing the basis for efficient searching and sorting algorithms. As a final exam-
ple, trees are frequently used in decision-making, particu!arly if a given choice Leads
to many other alternatives.

Recently. tree structures have been successfully applied to the probiem 0:’
simulating dynamical physical systems using particles. If Iong-range forces arc
present. trees can be used to efficiently compute the influence of remote groups of
particles using multipole expansions. In the “hierarchical tree” approach to Lpf-body
dynamics (e.g., Cl-53) trees are used to reduce the operations count per step from
- @iv’), as would be required by a simpie direct sum. to - O(N log N), without
introducing a fixed grid, as in particle-mesh methods. A more refined technioruc,
known as the “fast multipole method” (e.g., L76-8]), also relies on trees to perfo~
multipole expansions, but with a scaiing -O(N).

Trees are also useful for computing short-range interactions. For example- in
particle-hydrodynamic methods, local forces, such as those arising from pressure
gradients, contribute to the equations of motion. 11 “smoothed particle

I37
0021-999!.90 53.w

Capyrighr tm 1990 ix Aiadtms Prssh. in;
-\I! nghti ul reprodumon in an> form rz~reii

138 LARS HERNQUIST

hydrodynamics” (e.g., [9]) these terms are estimated from the local distribution of
particles. Consequently, it is desirable to perform nearest neighbor searching
efficiently. Recently, Benz [lo], Hernquist [Ill, and Hernquist and Katz [12]
have discussed the merits of tree-based neighbor detection and this approach
appears to be promising if the search interval is variable. Similar physical settings
include screened plasmas, molecular dynamics, and nuclear interactions (e.g.,
c7, 131).

In all these applications tree traversals can be used to identify the interactions
among the particles. Intuitively. these operations appear to be most well suited for
parallel computers such as the Connection Machine (e.g., [14]). For a vector
architecture, as a CRAY X-MP or CRAY-2, the optimal procedure has not yet
been established and, indeed, most previous implementations of tree-based particle
schemes have proc’essed trees in scalar mode (e.g., [10, 11, 15)). Since the cpu
usage is dominated by scalar arithmetic, in such cases, there is strong motivation
for a vectorization of the requisite tree searches.

In this paper, I describe one approach to the vectorization of tree traversals.
Rather than processing trees no& by node, as in a scalar implementation, this algo-
rithm traverses the trees letlel by Ietlel. Vectorization is achieved by looping over all
relevant nodes, at the same level, simultaneously. This method is not unique
(e.g., [16, 171 j, but has the virtue of preserving the basic structure of the scalar
algorithm, which is an advantage if multiple time-scales are present (e.g., [121).

In Section II, I motivate the need for an eflicient tree traversal procedure by sum-
marizing the properties of the hierarchical tree method. The vectorized algorithm is
described in Section III, along with simple timing tests. Finally, a summary is given
in Section IV.

II. THE HIERARCHICAL TREE METHOD

(a) Basic Principles

The straightforward particle-particle (PP) technique for computing long-range
interactions, in which the force is determined by direct summation. has a number
of advantages over other potential solvers. In particular, it is fully Lagrangian and
does not use a grid. However, since the computing time per step scales as -O(N’)
this approach is prohibitively expensive for large N.

Recently. a new class of N-body algorithms has been proposed which retains
many of the advantages of the PP technique (e.g., [l-5]). Rather than compromis-
ing the spatial resolution and,/or imposing geometrical restrictions. the hierarchical
tree method introduces explicit approximations into the calculation of the potential
to improve efficiency.

Particles are first organized into a nested hierarchy of clusters or cells and multi-
pole moments of each cluster or cell are computed up to a fixed order. The
acceleration is obtained by allowing each individual particle to interact with various
elements of the hierarchy, subject to a prescribed accuracy criterion. As a rule, the

VECTORIZATION OF TREE TRA\‘ERSAI.S : xc i ..i

force from nearby particles is computed by direct summation. The influence of

remote particles is included by evaluating the multipoie expansions of the clusters

or sells which satisfy rhc accuracy requirement at the location of each particle.

Typically. the number of terms in the expansion, c is small sompared witi: the

number of particles in the corresponding cluster or cell, and a significant gain in

efficiency is realized.
If the accuracy criterion is such that the size of an unresolved cluster or cc!!

increases in proportion to the distance from a given poinl, then a sum over N per-
tides is replaced by a sum over log N interactions. and the cost per step scales as

-- OjN log N). The cpu efficiency can be further improved by symmetrizing the

force calculation between clusters or cells. In the j&r ~~jt@oole metid [6-S. !8]
particles are organized into cells and cell-cell interactions are computed prior to the

force calcuiation. Once these have been determined the force on a single particle

can be obtained in a time independent of N, resulting in an overali scaling _ O! A;,>.
The construction and maintenance of the hierarchy and subsequent derermina-

tion of interactions can be performed efficiently through the use of tree-structnred

data (e.g., [l&S, 7, 15, 19-211). Unlike fixed grids, tree struclures are adaptive and
do not constrain the global geometry or 1oca.l spatial resolution. Thus. rhe

hierarchical tree method retains most of the advantages of the PP technique. ?ur
at a significant reduction in computing costs.

The Barnes-Hut method relies on a hierarchical subdivision of space into regu!ar
cubic cells. At each step, prior to the force evaluation. a tree structure is bui!: to
store the hierarchy. Each node in the tree is associated with a cubic volume of space
containing a given number of particles. In 3D, each volume is subdivided into eight

subunits of equal volume, which become the descendents of the original node in t&e
tree structure. This process is continued recursively tinti; each f~~darne~~~i sxbczli
contains either one or zero particles. Empty cells are not stored explicitIy in rhe
tree, thus the leaves represent volumes of space containing precisely one particle. As
part of the tree-building procedure, the total mas”, c center of mass coordinates, 2g.d
quadrupole moments of each cell are computed recursively.

The force in a given particle is determined by walking through the tree.
beginning at the top of the hierarchy (i.e., largest volume). At each step, the size csf

the current cell, s, is compared with its distance from the particle, L;. If

where 6 is a fixed tolerance parameter, then the influence of all particles within the
cell is computed as a single particle-cell interaction. Otherwise, the cel’i is stib-
divided by continuing the descent through the tree until either the tolerance
criterion is satisfied or an elementary cell is reached. In this manner, all operalions.
including tree construction and force evaluation car, be performed on G(N Eog FJ>
time.

140 LARS HERNQUIST

III. VECTORIZATION

(a) Background

It is conceptually useful to regard the tree-walk used to compute long-range
forces as a device for establishing a list of interactions, i.e., a collection of cells and
particles with which a given particle interacts. In Hernquist’s [15] implementation
of the Barnes-Hut hierarchical tree algorithm, which was designed for vectorizing
supercomputers, interaction lists were established for single particles by walking
through the tree from node to node. Given an interaction list, the subsequent force
calculation was vectorized and an overall factor w 3-4 improvement in efficiency
was realized from vectorization and compiler optimization. However, the cpu usage
was dominated by the tree descent which was not at all vectorized.

Contrary to popular belief, tree descents can be fully vectorized. All algorithms
proposed thus far rely on the possibility of vectorizing gather and scatter opera-
tions, i.e., indirect addressing. This feature was not available to Hernquist [15] on
the MFECC CRAY X-MP, but exists on newer X-MPs as well as many other
supercomputers.

Makino [17] succeeded in vectorizing all aspects of the hierarchical tree algo-
rithm by performing tree descents for many particles simultaneously, vectorizing
loops over particles. This scheme allows for the processing of long vectors and on
machines such as CYBER 205s overall factors + 5 improvement in performance can
be obtained.

A device for reducing the number of tree searches has been implemented by
Barnes [161, who establishes interaction lists for grozlps of particles which are close
together in space; a procedure commonly used in the fast multipole method
[6-8, IS]. This shifts the bulk of the computation from the tree descents to force
summation, by minimizing the required number of tree traversals. A further gain
can be realized by combining the Makino and Barnes procedures and performing
tree searches for many groups simultaneously (e.f., [121).

A disadvantage of both of these approaches lies in the fact that they do not
preserve the basic structure of the scalar version of the hierarchical tree method.
That is, interaction lists are established for many particles simultaneously. This can
be a hindrance if the force must be computed particle by particle, as is the case if
each particle has a unique time step.

Here, I describe yet another technique for vectorizing tree traversals, which
retains the basic structure of the original algorithm. Particles are processed
individually, but the walk through the tree no longer proceeds node by node but
rather level by level. That is, the tolerance criterion, Eq. (I), is simultaneously
applied to all relevant cells at a given level. Those cells at the current level satisfying
the accuracy requirements are added to the list of interactions. The remainder are
subdivided and their descendents are placed on the list of cells to be visited on the
next level further down.

The vectors which result from this procedure are typically short, and hence this
approach will probably not be optimal for a CYBER 20.5. Empirically, the average

VECTORIZATION OF TREE TRAVERSALS 141

vector length is rougly given by (Lveczor) zs L.,G -z logtoN. where Lo is a cOn§tanl
depending on the density profile. For example, in the case of equilibrium Plummel-
models [15], 15,~ - 8. Thus, for IV= 32768 and 8 = 0.6, (LYtCtOT) z 100.
the amount of overhead required is negligible and the tree descent routines are sped
up by a factor of ~4-5 on a CRAY X-MP, resulting in an overall gain of z Z-3,
depending on the number of terms retained in the multipole expansions.

(b) .4 Vectorized Aigorithm to Establish Interaction Lists

Ry traversing trees level by level, the subroutine to establish interaction lists 0%~
be written concisely in standard, non-recursive FORTRAN. For example, suppose
that it is desired to determine the interaction list for body f9, using the tolerance
criterion (1~. In a form optimized for a CRAY, this subroutine might be writteri
schematically as follows:

SUBROUTINE treewalk(,p, nterms. terms)
INCLUDE “treedefsh”
INTEGER asubp(maxnnode), i, isubset(maxnnode), keepnear(mzxncode:.

2z nkcep. nnodes. node(maannsde), nsubdiv, nterms. p, rerms(rrraxnterm !
LOGICAL tolcritjmaxnnode)
nterms = 0
nnodes = 1
node(1) = rout

10 CONTINUE
YF(nnodes. GT.0) THEN

DO 20 i = 1, nnodes
toicrit(i)= ((pos(p, I)-pos(node(i), 1))**2 + (pos(p, ?)-pos(node(i), Lij**Z +

B (poscp. 3)-pos(code(i\. 3))**’ &). GE. sizetol?(node(i))
keepnear = CVMGTI 1. 0, tolcrit(i))

20 CONTINIJE
C.&LL WHENEQinnodes, keepnear, I. 1, isubset. nkcep)
DO 3;: i = 1. nkeep

trrmsjnterms + i) = node(iwbset(i))
30 CONTINUE

nterms = nterms + nkeep
CALL %‘HENEQ(nnodes. keepnear, 1, 0, isubset. nsc%i,)
DOSOj=l.S

GO
50

DO 10 i = i. nsubdiv
asubp(i + [j - l)*nsubdiv) =subp(node(isubset(ij). j)
CONTINUE

CONTINUE
CALL WHENNE(S*nrubdiv. asubp. I, 0. isubset. nnodesj
DO 60 i = i. nnodes

node(i) = asubp(isubset(i))
50 CONTINUE

co TO 10
ENDIF
RETURN
END

Here, the argument nterms returns the number of bodies and cdls on the interac-
tion list, tewzs. The parameters mawterm and ma.wznode. defined in the incltlde fik

142 LARS HERNQUIST

treede f s.h, which is not shown, limit the lengths of the interaction list and the node
arrays, respectively. The local variable modes is the number of nodes to examine at
the current level, the indices of which are stored in the vector node.

The subroutine treewalk begins by putting the root node on the list of nodes to
examine. It then executes the IF-THEN block following the continuation line 10
once for each level in the tree, until no further nodes need be checked. The loop 20
computes the tolerance criterion (1) for each node on the list, by comparing the
square of the distance from body p to the node currently under scrutiny, node(i).
The global variable sizetol2 is the square of the linear size of cell node(i) divided by
the square of 6. For bodies, sizetol2 = 0, and hence the test is, in this case, always
satisfied. The intrinsic CRAY function CVMGT assigns either the value 1 or 0 to
element i of keepnear, depending upon the outcome of the tolerance check.

Given the results of the test in the loop 20, treeli,aIk then adds those terms
satisfying the tolerance criterion to the interaction list in loop 30. The subroutine
WHENEQ, which is CRAY-intrinsic, is used to select the elements of keepnear
equal to 1. In fact, the intermediate variable keepnear would not even be needed if
there existed a CRAY function to select elements of a logical vector. The second call
to WHENEQ identifies the cells failing the tolerance requirements. The descendents
of these cells at the next lower level in the hierarchy, identified by the subpointers
stored in array subp, are temporarily loaded into the vector asubp. The call to
WHENNE, another intrinsic CRAY subroutine, selects those descendent cells
which actually contain particles, i.e., those with subp > 0. Finally, the cells to be
examined at the next lower level are placed on the list node. If any further cells are
to be tested, then the cycle is repeated; otherwise the tree search has been com-
pleted.

The loops 20, 30, 40, and 60 are vectorized. The CRAY intrinsic functions used
are highly optimized and similar routines exist on many other machines, such as
CONVEXs. For portability it is trivial to write routines to perform these CRAY
functions.

Note that in the listing of treewalk, I have suppressed diagnostic error checks.
Thus, the loops which assign values to the vectors terms, asubp, and node should
be preceded by statements to guarantee that array overflows will not occur.

(c) Tree Construction

For geometric trees, such as those assumed here, the routines initializing the tree
structure are also fully vectorizable. The process of setting up pointers can be
vectorized by looping over all particles not yet placed in the tree (e.g., [17]). At a
given level in the hierarchy the appropriate direction in the tree for each remaining
particle is determined from its spatial coordinates. Those found to be the sole
occupants of a cell at the next lower level are added to the tree and removed from
the list of particles in the loop. The procedure is repeated until all particles are in
place.

Given the pointers, the calculation of the mass, center of mass coordinates, and
quadrupole moments of each node can be vectorized by looping over all cells at the

VECTORIZATION OF TREE TRAVERSALS 14.2,

same level in the tree, starting with the level immediately above the particles. Sinze
the properties of a node depend only on the properties of its descendents. there iGil
be no conflict if the cells being processed are at the same level and this
starts at the deepest level. This procedure is analogous to that given above, except
that the tree traversal proceeds from the leaves to the root. The following snb-
routine demonstrates this concept by initializing the masses of all cells in the
hierarchy.

SUBROIJTINE cellmass(ncell. cell)
INCLUDE “treedefsh”
INTEGER asubp(maxnnode), cell(manncell), fcell, i. isubset (maxnnode j,

c?L j, lcell, ncell, nnodes, parent (maxnnode)
DO 10 i = I, ncell

mass(i) = 0.0
10 CONTINUE

feel! = 1
10 CONTINUE

IF(fcell.LE.ncel!) THEN
DO 30 i = fcell, ncell

iF(ABS(size(cell(i))-size(cell(fcell)j~.LT.O.Ol*size(cell(fceli))) THEN
lcell = i

ELSE
GO TO 40

EYDIF
30 CONTINUE
40 CONTINUE

DO 70 j = i.8
DO 50 i = fcell. Ice11

asubp(i-fceli + 1) = subp(cell(i). j)
50 CONTINUE

CXLL WHENIGT(lcell-fcell+ 1, asubp. I, 0, isubset, naodes)
DO 6’1: I = 1. nnodes

parent(i) = cell(isubset(i I + fceli- 1)
asubp(i) = subp(parent(i), j)
masslparentii)) =mass(parent(i)) + mass(asubp(i))

so CONT:NUE
70 CONTIWJE

fceil = Icell + I
GO TO 20

ENDEF
RETURN
END

The argument cell is a list of the cells in the hierarchy, the number of which is
given by the argument ncelf. The parameter maxmode has the same meaning as tr:
e~eeil~akk, while masncell, which is also defined in rreedeJs.h. limits the total number
of cells.

For a geometric tree, it is convenient to group ceils by their linear size, since it
is the same for all cells at the same depth in the tree. The routine ceilmass assumes

144 LARS HERNQUIST

that the cells in the list of cells are pre-ordered by their linear size. This will be the
case if the tree is constructed using the procedure discussed above.

Masses are initialized in the loop 10. The variables fcell and lcell identify the first
and last cells in the sorted list of cells that are the same size, i.e., at the same
level in the tree. The pointerfcell is set to 1, prior to the main block of statements
beginning with the continuation line 20.

The masses of the cells in the current group are computed within the major
IF-THEN block following line 20, as long as some cells remain to be processed.
The statements within loop 30 determine which cells in the sorted list are at the
same level as the cell identified by fcell. Loop 70 is over the eight possible
descendants of each cell in the group. For each possible path to the next lower
level, the loop 50 initializes a temporary vector, asubp, containing the subpointers
of the current group of cells. The call to WHENIGT, another CRAY intrinsic
function, selects those descendent cells which actually contain particles. The masses
of those parent cells with non-empty descendents are then incremented in loop 60.
Finally, after all descendents have been checked, fcel2 is set to point to the next
unprocessed cell in the sorted list, and the procedure is repeated.

The loops 10, 50, and 60 are vectorized. The loop 30 is not, but requires a
negligible amount of time. Again, diagnostic error checks have been suppressed in
this listing.

(d) Other Applications

The algorithm outlined in Section IIIb can also be applied to nearest neighbor
searches using trees [12]. That is. suppose the neighbors lying within a distance rs
of body p are to be located. The tree traversal proceeds as before, level by level,
checking to see if this search volume overlaps the node currently being examined.
If not, then this cell can be neglected; otherwise the cell is subdivided and its non-
null descendents are then examined in the next iteration. This process continues
until a body node is found, and then a final check is made to determine if it is, in
fact, a neighbor of body p.

(e j Timing Tests

To ascertain the actual gain in cpu efficiency from vectorization of the tree traver-
sals in the Barnes-Hut algorithm, I ran a number of models, similar to those con-
sidered earlier by Hernquist [15], varying N, 8, and the number of terms in the
multipole expansions. All tests were performed on a CRAY X-MP 48, using the
CFT FORTRAN compiler, version 1.14.

In Table I the results of timing tests made with equilibrium Plummer models are
shown for a fully vectorized tree code and Hernquist’s partially vectorized code
[IS]. Here N= 8192 and only monopole terms were retained in the multiple expan-
sions. The corresponding results for a quadrupole version are given in Table II.

As 6 decreases. the enhancement in performance from vectorization becomes

VECTORIZATION OF TREE TRkVERSALS

TABLE I

CPU Efikienq of Monopoie Code

d
Partia! vectorization

tcpu S. step)
Full vectorization Ratio

(CPU s:ste~) (net gain;

1.0 5.95 2.53 1.35
0.9 7.04 2.90 2.43
0.X 8.67 3.41 Z.54
0.1 11.3 4.74 167 -.
0.6 15.4 5.47 2.82
0.5 27.4 7.55 2.95
0.3 33.9 ii.2 3 04

more significant. as the average length of the vectors being processed increases. The
gain appears to saturate around a factor of z 3 for the monopole version and a
factor .~2.5 for the quadrupole code. The improvement 1s larger if only msn+ule
terms are used since the tree traversals then account for a reiativeiy larger fraltix:
of the CPU costs (e.g., [I51 j. For larger IV, the gain increases slowly, as the vectors
become longer, and appears to saturate at a Level similar to that indicated in Tabkes
i and II.

The cpu usage of the fully vectorized code is more evec!y baianced between ixc
descents and force summation than in the partiaily vectorized code. tv!tich a. as
dominated by the former. For the tests given in Table 1: roughly 40?6 of the zime
was spent in performing tree searches and =ZSY% in ferce siummaiion. For tk
quadrupole code, Table If, the percentages are neariy equal, with ~459~ in the t;*ee
descent phase and 5 50% in force summation. In principle, scme improvemen: n-x:$
be possible for the monopole code through the use of Barnes’ Kec~~~que [!6j <or
establishing interaction lists for groups of particles,.

These timing tests include a full vectorization cf the subrculines used i3 IsuiHd

TABLE iI

CPU Effkiency of Quadrupoie Code

Partiai vectorization
(cpu s/step)

Fdl vec1orizaiion
(cpu s,‘step b

1.0 8.98 4..19 2.14
0.9 10.5 4.78 7.20
0.8 12.9 5.61 2.33
0.7 16.7 114 ?- 4 -.-
C.6 31.9 9.09 2X
0.5 32.3 11.9 3.53
0.4 47.7 18.3 2.62

146 LARS HERNQUIST

and manipulate the tree structure. These procedures are inexpensive, in spite of the
fact that the tree is reconstructed at each step. For the fully vectorized runs shown
in Tables I and II, the overhead in building the tree amounted to ~2~3% of the
cpu time used, an improvement over the partially vectorized code [15]. Although
not critical in this case, it is important that the tree construction be performed as
efficiently as possible for applications where particles have individual time steps and
the tree is rebuilt on the smallest time-scale [12].

Finally, the efficiency of the fully vectorized code, running on a CRAY X-MP48,
was compared with an identical version operating on a SUN 3/50 and a VAX
11/780. The performance ratio CRAY:SUN or CRAY:VAX was typically
~350-500, depending on the vector lengths, which, in turn, depend on N and 6.
For example, if 8 = 0.6, with quadrupole terms, an N= 8192 Plummer model ran a
factor ~4440 times faster on the CRAY than the SUN, in good agreement with tests
made with linear algebra packages (e.g., [22]). The SUN 3/50 has a floating point
rating of roughly 90 kflops, implying that the CRAY X-MP48 is being driven at
:~335-50 Mflops, which is still considerably less than the theoretical peak perfor-
mance of 210 Mflops per processor. This is probably the result of memory access
delays, lack of complete chaining, operations involving vectors of non-optimal
length, and extensive use of gather-scatter operations.

IV. SUMMARY

A general technique for vectorizing tree traversals has been discussed. In this
approach, trees are no longer regarded as a collection of individual nodes, but
rather as a set of vectors of variable width. Operations on these vectors can be fully
vectorized, provided that indirect addressing does not inhibit vectorization. Simple
tests indicate that factors -4-5 improvement in the efficiency of tree traversals can
be obtained with this technique on machines such as CRRY X-MPs.

Contrary to earlier somewhat pessimistic expectations, the tree traversals
required by the hierarchical tree method can be vectorized in this manner, resulting
in overall factors v 2-3 reduction in cpu costs.

It is perhaps somewhat surprising that tree traverals can be fully vectorized since
such functions would appear to be most ideally suited for parallel architectures.
Yet, the prescription presented here is not even unique. It appears that the algo-
rithms proposed thus far will complement one another, implying that the hierarchi-
cal tree method can be adapted to perform efftciently on almost any computer. The
technique outlined in this paper will be optimal on machines with hardware
gather-scatter which prefer short vectors, such as CRAYs, while Makino’s method,
everything else being equal, will be most effective on machines which prefer longer
vectors. Finally, as noted by Barnes [163, the limitations imposed by the require-
ment of a hardware gather-scatter capability can be minimized by shifting the
emphasis to linear arrays. The primary advantages of the approach presented here
lie in its simplicity and potential for wide-spread application.

VECTORIZATION OF TREE TRAVERS.tLS

I thank Jcsh Barnes. Piet Hut, and Jun Makino for discussion about the :iierarcbicai tree methoa.

This work was supported in part by a grant from the Pittsburgh Sapercomputing Center xd by NW
.iersey High Techno!og> Grant 88-740090-2.

REFERENCES

1. A. W. APPEL, Thesis, Princeton University, 198l (unpublished).
2 .%. W. .%PPEL. S.MM J. Sci. Srnrisr. Compur. 6. 85 (1985).
3. j. 6. JERN:GAN, in 1.1t: Swp. 13: Proceedings. D.vnaniics of Stilr C!usren, edited by J. Goodm3r

and P. Hut (Reidel, Dordrecht, 1985), p. 275.
I D. PORTER, Thesis, University of California, Berkeley, 1985 (unpublished).
5. .I, BARNES ASD P. HUT. N~UYZ 324. 446 (1986).

6. i. GREENGAKD AND V. RoKHLtN, J. Cmpur. Ph~s. 73, 325 i 1987).
1, L,. GREENG.ARD, Tile Rupid Ecu!uuiion qf Potential Fidds in Parricle S~~sremr (MIT Press.

Cambridge, 1988 1.
ti J. ?,hfBROStANO, L. GREENCARD, AND v. ROKHLIN. Cwtl~'i'. P!I,w. Cnnvmm 48. 117 ! 1988).
9. 5. J. MONAGHAN. Cmpm. PRJJ. Comn~m. 48. 89 (1988).

10. tli. BEtiZ, b?~prif. P&W. ~0mnW7. 48, 97 (1988).
II. I-. HERNQUIST, Compui. PAYS. Co~mzun. 4X, 107 (1988).
17. L. HERNQUST AND N KATZ. +J. .I. Suppl. 70, 419 (1989).
13. D. H. BOAI., inn. Rer. Xucl. und Part. Sci. 37, 1 (1987).
II. W. D. HILLS. Z%he Connecrion Mackine (MIT Press, Cambridge, 1985).
15. E. &RNQUIST, Ap, .I. S~ppi. 64. 715 (1987).
16. .I. BAR43 i. Conymr. P~z,vs. 87. 161 ! 1990).
IT. J. !dhKINO. J. Cao!npuf. L%JX 87. 148 (1990).
18. .I. CARRIER, i. GRCENGARD, AND V. ROKHLIN, SIAM J. SC!. Sktrisr, Cowput. 9. 669 (1988).
19. 3. bRNFIS. in The 1:x of Supercontpufers in Srelh D~nnmics. edited by P. Hut and S. McMiilx~

(Springer-Veriag. Beriin. 1986), p. 175.
IO. D. PORTER AND J. 6. JERNIGAN, preprint (1987).
21. W. H. PRESS. in The C:se of Supercmpctrers in Srdnr D~mmir, edited by P. Hut and S. McMi!len

(Springer-Verlag, Berlin. 1986). p. 184.
5-3. 5. J. DONGARRA, Technical Memorandum No. 23, Argonne Natioral Laboratory. I?%

(unpublished :_

